AP研究会 2012.11.16

2ステージ法による簡易型MIMO-OTA評価のシミュレーション手法 とアンテナカップリング特性評価への応用

孫 桂江^{*}中田 克弘^{*}大島 一郎^{**} 唐沢 好男^{*} (*電気通信大学 **電気興業株式会社)

信学技報A.P2012-94, pp. 7-12, 2012.11.

◆MIMO-OTAとは

◆フェージングエミュレータ型MIMO-OTAの構成と分類

◆2ステージ法による簡易型MIMO-OTAの構成

◆2ステージ法のシミュレーション手法

◆アンテナカップリング特性評価への応用

複数のアンテナをもちいて、高速伝送を実現するMIMO技術は、 無線通信システムへ応用が進んでいる

フェージングエミュレータ型MIMO-OTA:全体構成

伝搬チャネル制御部の基本構成

パス制御型

アンテナブランチ制御型(簡易型)

- ●伝搬チャネル特性を、パス 単位で制御
- ●高柔軟性、高性能、高価格

●伝搬チャネル特性を、アン テナブランチ単位で、機能を 分担して制御
●機能と性能は従来方式と 同等。構成簡易、低価格

本研究はこの方式に2ステージ法 を組み入れる

フェージングエミュレータ型MIMO-OTA:全体構成

電波暗室のサイズがDUTに対して十分な大きさが取れない場合

DUTサイズが大きくて、電波暗室内に、プローブアンテナを配置できない場合でも1方向に十分な距離があれば、MIMO-OTA評価できる。 (例えば、自動車に取り付けられたアンテナ、自動車内の端末)

2ステージ法による簡易型MIMO-OTA評価法を提案し、 そのシミュレーション手法を示し、

また、その応用例を示すことで、提案方式の有効性を検証 する。

MIMOチャネルモデル(アンテナブランチ制御型)

受信信号

$$r(t) = H(t, \tau) \otimes s(t) + n(t)$$

 $f(t, \tau) = A_{RX} A_{Doppler}(t) H_{delay}(\tau) A_{TX}$
 $H(t, \tau) = A_{RX} A_{Doppler}(t) H_{delay}(\tau) A_{TX}$
 $H_{delay}(\tau) A_{TX}$
 $H_{delay}(\tau) = \sum_{k=1}^{K} A_{dalay}^{(k)} \delta(\tau - \tau_k)$
 $H_{dealy}(\tau) = \sum_{k=1}^{K} A_{dalay}^{(k)} \delta(\tau - \tau_k)$
 $A_{dalay} = diag(\alpha_1^{(k)} c_k \alpha_2^{(k)} c_k \dots \alpha_L^{(k)} c_k)$
 $A_{Doppler}(t) = diag(e^{j2\pi f_{D1}t} e^{j2\pi f_{D2}t} \dots e^{j2\pi f_{D1}t}) f_{D1} = \frac{v}{\lambda} \cos \theta_1$
 $f(t) = e^{jkd_n \cos(\theta_1 - \theta_0)}$
 $P_{tn} = e^{jkd_n \cos(\theta_1 - \theta_0)}$
 $P_{tn} = e^{jkd_n \cos(\theta_1 - \theta_0)}$
 $P_{tn} = e^{jkd_n \cos(\theta_1 - \theta_0)}$

2ステージ法:第1ステージでの測定

L=8であれば、8方向のみのアレー測定でok 行列 *A_{rx}*{*N*×*L*} のデータ取得

2ステージ法による簡易型MIMO-OTAの構成

12

実数信号の複素数ウェイト変換

IF帯で第2ステージのシミュレーション

アンテナカップリング特性評価への応用

◆具体的な応用例を示す

◆ 2ステージ法の精度検証を行う

◆ カップリングによるチャネル特性変化を評価する

▶ 2ステージ法によるシミュレーション

▶ マルチパスリッチ環境を有する電波反射箱内での測定

> 二者の結果を比較する

第1ステージでのアンテナパターン測定

(a) d = (1/8) λ

(b) d = $(3/2) \lambda$

大島一郎, ''空間相関とアレー素子結合を考慮したMIMO 伝送特性[I], ''信学 技報, AP2007-103, pp.7-12, 2007.11

アンテナ放射パターン(単体アンテナの場合)

大島一郎, ''空間相関とアレー素子結合を考慮したMIMO 伝送特性[I],''信学 技報, AP2007-103, pp.7-12, 2007.11

アンテナ放射パターン(アレーの場合)

d=0.5λ

第2ステージでのシミュレーション評価

◆狭帯域信号を対象に

◆実現すべきチャネルモデル:i.i.dレイリーフェージングチャネル

◆固有値特性と通信路容量を評価する

シミュレーションパラメータ

MIMOシステム	$2{ imes}2$	2×4 , 4×2 , 4×4
プローブアンテナ本数 L	8	16
搬送波周波数 f_c	40MHZ	40MHz
シンボル周波数1/T _S	40MHz	40MHz
正規化最大 ドップラー周波数 $f_D T_s$	0.01	0.01
チャネル行列サンプル数	1000000	1000000
受信アンテナ間距離 d	0.125λ,0.25λ, 0.5λ,1λ	0.125λ,0.25λ, 0.5λ,1λ

※ ん:波長

電波反射箱を用いた検証用データ取得

4(m)x2(m)x2(m)サイズの電波反射箱

電波反射箱を用いた検証用データ取得

電波反射箱を用いた検証用データ取得

- ▶ 2×2、2×4、4×2、4×4のシステム
- > 受信アンテナ間隔が0.125λ、0.25λ、0.5λ、1λ
- > 5.0~5.2GHzの200MHz帯域幅で、125KHz間隔に、1601ポイント
- 空間方向±1.5λ、0.05λ間隔で移動
- > 周波数軸と空間軸の両方で約10万点のデータ
- > 固有値特性と通信路容量を求める

シミュレーション結果と実測結果との比較

◆ 固有値の累積確率分布、固有値の平均値、 通信路容量の平均値について

◆ 2ステージ法シミュレーション値と電波反射箱での測定値 とi.i.d理論値との比較

4×4MIMOの固有値の累積確率分布の比較

アンテナ間隔ごとの固有値平均値の比較

26

アンテナ間隔ごとの通信路容量の平均値の比較

27

◆アンテナ間隔が小さくなるほど、カップリング影響が大きく なる原因で、固有値と通信路容量が低下する

◆シミュレーション値は実測値と近い結果であった

◆2ステージ法はアンテナパターンが分ければ、特性を精 度よく推定できる

まとめ

2ステージ法による簡易型MIMO-OTA評価システムの 構成とシミュレーション手法を示した

◆ 提案手法の応用として、アンテナカップリング時の特性評価をシ ミュレーションで行った

- ◆ シミュレーション結果を検証するため、マルチパス環境を実現する 電波反射箱での測定を行った
- ◆ 提案方式はアンテナパターンがわかれば、チャネル特性を精度よく推定できる
- ◆ 今回はFPGA実装前の動作確認であるが、2ステージ法の計算機 シミュレーション自体でも、1つの評価手段として有効である。