

IEEE The 2009 Int. Conf. Advanced Tech. for Communications

A New Concept of Baseband Radio

Yoshio KARASAWA

Advanced Wireless Communication research Center (AWCC) University of Electro-Communications (UEC Tokyo)

Presentation Topics

- 1. Baseband Signal vs Bandpass Signal
- 2. Wireless Baseband Transmission (WBT)
- 3. Experiment on Baseband Radio Adapting to Environmental Change
- 4. Radio Signal Processing Adaptive Array for Terrestrial Digital TV Signal under Multipath Environment

Ô

Wireless Transmission Scheme

Wireless Baseband Transmission

UEC Tokyo

Data Transmission Scheme

UEC Tokyo

Baseband Signal vs. Bandpass Signal

UEC Tokyo

Wireless transmission signal

- time domain: real
- freq. domain: complex

(c) Baseband signal transmission

The First Step: Wireless Baseband Transmission (WBT)

-1 0 1 2 Frequency f (x $1/T_0$)

Generated Signal to be Transmitted (after Manchester Coding)

Data Detection

Error-free detection can be confirmed.

BER Characteristics of WBT

Result

Possibility of WBT has been demonstrated.

Positive feature of WBT

GHz frequency signal can carry Gbit data.

Antenna size of (10cm)³ can realize 2.5Gbps transmission. (confirmed)

Antenna size of (1cm)3 can realize 25Gbps transmission. (estimated)

Problem to be solved

There is an substantial interference problem like UWB-IR due to wide frequency band occupation. Accordingly, this scheme restricts application fields very strictly.

The Second Step: Baseband Radio

Three Radios

Adaptive Communication

Ê

Cognitive Radio (CR)

"cognitive" Recognition, Process of Understanding

Cognitive Radio (CR)

- Access method
- Modulation scheme
- > Frequency
- Data rate

Adaptive radio system which can change its system parameters autonomously, based on environmental sensing and intelligent judgement

Ultimate Efficient Use of Radio Frequencies Avoiding Radio Congestion

UEC Tokyo

Baseband Radio

with Software-Defined Radio(*) and Cognitive Radio(**) functions

*) Kaleidoscopic change of configuration (reconfigurable)
**) Recognition of radio encironment (intelligent)

Cognitive Radio avoiding Radio Traffic Congestion based on Recognition of Radio Environment Change

UEC Tokyo

Baseband Radio with Cognitive Radio Function

Creation of Transmission Signal

Frequency band to be used in this communication

Baseband OFDM

CF:20.12MHz

from the antenna without up conversion.

Basic Experimental Configuration and Procedure

DSO: Digital storage oscilloscope FG: Function Generator Experiment procedure

- 1 Environment recognition
- 2 Channel sounding (using pilot signal)
- 3 Coding and Pre-distortion
- 4 Data transmission
- 5 Signal detection and analysis

Performance of DAC & ADC

Sampling rate of DAC in FG	250MH z
Resolution of DAC	14bit
Sampling rate of ADC in DSO	250MH z
Resolution of ADC	8bit

UEC Tokyo

Pre-Distortion

UEC Tokyo

UEC Tokyo

Evolution of Wireless Terminal

Ê

Antenna Diversity

based on Radio Signal Processing for Terrestrial Digital TV

Specification of Digital TV (ISDB-T)

Bandwidth	5.572 MHz
OFDM symbol period (T _s)	1,008 μs
Guard Interval (T _{GI})	126 μs
The number of subcarriers	5,616
The number of segments	13
Primary Modulation	64QAM (HDTV)
	QPSK (1-seg.)
TV channel	27ch(NHK-G)、
Carrier frequency	557.142857MHz

Total Recording

Adaptive Array based on Radio Signal Processing

"Radio Signal Processing" which processes IF signal directly without demodulation and detection.

Application of this scheme to the maximal ratio combining diversity scheme with subband signal processing for mobile reception of terrestrial digital TV broadcasting signal

Baseband Signal Processing and Radio Signal Processing

Radio Signal Processing Adaptive Array

Combined signal

Maximal-Ratio Combining with Subband Signal Processing

UEC Tokyo

Demonstration of MRC reception based on Radio Signal Processing

AWCC

(omitted)

Diversity Effects (Analyzed based on RSP)

UEC Tokyo

The Three Radios, again

Adaptive Communication

