

EuCAP 2014 April 9, 2014

Propagation Channel Modeling for Wideband Radio Systems

How to create realistic MIMO propagation environment for OTA measurements -

Yoshio Karasawa

Advanced Wireless Communication research Center (AWCC) University of Electro-Communications (UEC Tokyo)

Outline

WCC

1. Introduction: MIMO and MIMO-OTA

- 2. Channel Model for MIMO OTA Systems
 - Simplified Configuration
 - Channel Model
- 3. Two-Stage Scheme for MIMO Fading Emulator
- 4. Development of MIMO Fading Emulator using FPGA
- 5. Application Examples
- 6. Conclusion

Outline

AWCC

1. Introduction: MIMO and MIMO-OTA

- 2. Channel Model for MIMO OTA Systems
 - Simplified Configuration
 - Channel Model
- 3. Two-Stage Scheme for MIMO Fading Emulator
- 4. Development of MIMO Fading Emulator using FPGA
- 5. Application Examples
- 6. Conclusion

Applications are from W-LAN to next-generation mobile wireless systems.

Trend of MIMO R&D

- O Transmission scheme
- O System application (from WLAN to LTE-advanced)
- O System development (MU-MIMO, large-scale MIMO)

- O Establishment of performance evaluation system for MIMO user terminal (MIMO-OTA)
 - Handset-related problem such as antenna coupling effect
 - High needs to the measurement system development
 - Insufficient research for MIMO-OTA
 - Establishment of standard scheme

AWCC

Outline

AWCC

1. Introduction: MIMO and MIMO-OTA

- **2. Channel Model for MIMO OTA Systems**
 - Simplified Configuration
 - Channel Model
- 3. Two-Stage Scheme for MIMO Fading Emulator
- 4. Development of MIMO Fading Emulator using FPGA
- 5. Application Examples
- 6. Conclusion

Required Function for MIMO-OTA Measurement System

Fading Emulator-type MIMO OTA System

Basic Configuration of Multipath Fading Generation Part

Path-Controlled Scheme

Number of delay units: *MLK* Number of Rayleigh faders: *MLK* (*K*: Number of multipath delays)

Almost perfectly controllable Large scale configuration

Antenna-Branch-Controlled Scheme

Number of delay units: *LK* Number of Doppler shifters: *L*

Flexibly controllable (realization of some functions is limited.) Simplified configuration (easy to FPGA implementation)

Functional Block Configuration of Antenna-Branch-Controlled Scheme

AWCC

Cumulative probability

Eigenvalue characteristics of 4 x 4 MIMO in i.i.d. condition

Eigenvalues of AA^{H}

where *A* is channel matrix.

Weight Matrix (=Connection Matrix)

for realizing independent fluctuations of all delayed paths

Amplitude distribution of each generated delay paths

Amplitude (dB)

Outline

1. Introduction: MIMO and MIMO-OTA

- 2. Channel Model for MIMO OTA Systems
 - Simplified Configuration
 - Channel Model
- **3. Two-Stage Scheme for MIMO Fading Emulator**
- 4. Development of MIMO Fading Emulator using FPGA
- 5. Application Examples
- 6. Conclusion

When the chamber space is not sufficiently large to arrange the probe antennas in the chamber, and if the range in one direction is enough, then

Outline

1. Introduction: MIMO and MIMO-OTA

- 2. Channel Model for MIMO OTA Systems
 - Simplified Configuration
 - Channel Model
- 3. Two-Stage Scheme for MIMO Fading Emulator
- 4. Development of MIMO Fading Emulator using FPGA
- 5. Application Examples
- 6. Conclusion

24

Specification and Performance of Developed System based on Two-Stage Scheme

FPGA IC	XILINX Virtex 6 LX240T
Baseboard	XILINX ML605
Input/Output	
ADC	4DSP FMC104 (14bit)
DAC	4DSP FMC204 (16bit)
Input ports M	4
Output ports N	4
Signal processing	
Clock frequency f_s	160MHz
IF frequency	40MHz
Bandwidth	40MHz (max)
Propagation parameters	
Probe antennas L	16 or 32
Delay paths K	8
Maximum delay	50µs (for k=1-6), 200µs (k=7,8)
Delay resolution	6.25ns (when $f_s = 160 \text{MHz}$)
Doppler frequency	up to10kHz

AWCC

FPGA Implementation of 4x4 MIMO Fading Emulator

Developed MIMO Fading Emulator with FPGA Implementation

All necessary functions to generate multipath environment is implemented in this small box.

(Size: $28 \text{cm} \times 22 \text{cm} \times 5 \text{cm}$)

UEC Tokyo

Element pattern pattern and corresponding Doppler spectrum

Outline

1. Introduction: MIMO and MIMO-OTA

- 2. Channel Model for MIMO OTA Systems
 - Simplified Configuration
 - Channel Model
- 3. Two-Stage Scheme for MIMO Fading Emulator
- 4. Development of MIMO Fading Emulator using FPGA
- **5. Application Examples**
- 6. Conclusion

Application Example 1: WLAN (IEEE 802.11n) Throughput Evaluation

Intel Centrino Advanced-n 6200

WZR-AMPG300NH

Application Example 1: WLAN (IEEE 802.11n) Throughput Evaluation

UE: Intel Centrino Advanced-N 6200

Evaluation Examples

Change of Doppler spread

Change of delay difference

Evaluation example in Rayleigh fading environment

Application 2: Channel Capacity Evaluation in the case of Antenna Coupling and Spatial Correlation

(a)
$$d_r = (1/8) \lambda$$

(b) $d_r = (3/2) \lambda$

Element Antenna Pattern for N=4

Developed MIMO Fading Emulator

Measured Antenna Pattern data

MIMO Channel Capacity Decrease due to Antenna Coupling

Conclusions

- We discussed a propagation channel model for OTA test systems.
- One of the primary practical advantages of the proposed scheme is the realization of a flexible MIMO OTA testing system in a very simplified configuration without the loss of necessary functions.
- Due to the way that the fading functions are configured in a cascade, an implementation of the scheme into FPGA circuit is promising from a practical viewpoint.
- We showed detailed performance of the FPGA-implemented fading emulator and a couple of applications of the system to wireless communication performance evaluations.

What I want to say is

AWCC

MIMO Fading Emulator/Simulator having all necessary propagation functions can be realized easily without expensive cost.

Thank you very much for your kind attention !!

