

EuCAP 2007 Nov. 12-16, 2007

Multi-Keyhole Model for MIMO Radio-Relay Systems

Y. KARASAWA, M. Tsuruta and T. Taniguchi

Advanced Wireless Communication research Center (AWCC) Univ. Electro-Communications (UEC Tokyo)

Ŵ

Outline of Presentation

- 1. Radio-relay system for MIMO service area expansion
- 2. Multi-keyhole model for the system performance evaluation
- 3. Empirical formula for PDF of the largest eigenvalue
- 4. Empirical formula for PDFs of all eigenvalues
- 5. Evaluation of the estimation accuracy
- 6. Conclusions

AWCC

Motivation

- Why do we need MIMO channel models?
 High data rate transmission (WLAN, WiMAX)
- Service expansion to isolated areas
 MIMO repeater system

 (MIMO radio-relay system)
 Ad Hoc Network

Keyhole environment

Multi-antenna relay

Multi-keyhole environment

r

Channel Expression of Radio-Relay Systems

User terminal

Received signal $\mathbf{r} = \mathbf{H}_r \mathbf{G} (\mathbf{H}_t \mathbf{s} + \mathbf{n}_{rp}) + \mathbf{n}_{rv}$

Eqivalent channel (CSI) when the effect of thermal noise power in RS is negligible.

$$\mathbf{H}_e = \frac{1}{\sqrt{K}} \mathbf{H}_r \mathbf{H}_t$$

Hereafter, we discuss PDFs of eigenvalues for $\mathbf{R} \equiv \mathbf{H}_{e}\mathbf{H}_{e}^{H}$

Eigenvalues in MIMO repeater system

AWCC

Rayleigh fading environment with i.i.d.

AWCC

PDF of the largest eigenvalue in single keyhole environment

Channel response matrix $\mathbf{H}_{e} = \mathbf{H}_{r}\mathbf{H}_{t}$ $= \begin{bmatrix} h_{11}^{r} & h_{21}^{r} & \cdots & h_{N1}^{r} \end{bmatrix}^{T} \begin{bmatrix} h_{11}^{t} & h_{12}^{t} & \cdots & h_{1M}^{t} \end{bmatrix}$ $\lambda_{1} = Trace(\mathbf{H}_{e}\mathbf{H}_{e}^{H})$

The p.d.f. of eigenvalue $p(\lambda_{1}) = \int_{0}^{\infty} \frac{1}{u} p_{2N}(u) p_{2M}\left(\frac{\lambda_{1}}{u}\right) du$ $p_{2M} \qquad p_{2M} \qquad$

(K_v: v-th order modified Bessel function of the second kind)

Approximated PDF of the largest eigenvalue

AWCC

Introduction of the number of effective increment antennas L

Before the
transformationAfter the
transformationImage: ConstructionImage: Construction

UEC Tokyo

the number of effective increment antennas L $L(M, N, K) = \alpha (NM(K-1))^{\beta}$ $\alpha = 0.4343, \beta = 0.6681$

It is the resonable approximation.

AWCC

UEC Tokyo

 Λ : Power adjustment factor (average value of eigenvalue)

Comparison between simulated values and calculated values ~the largest eigenvalue~

AWCC

PDF of each Eigenvalue in i.i.d. Environment (approximated)

UEC Tokyo

Approximate Formulas of PDFs for All Eigenvalues

Comparison between simulated values and calculated values ~all eigenvalues~

Conclusion

- MIMO radio-relay system (or MIMO repeater system) which can expand service area to isolated areas is introduced.
- For the system designing, channel model is important. A channel model named multi-keyhole model for this purpose is presented.
- \bigcirc An empirical calculation method for PDFs of eigenvalues in the channel is developed.
- The proposed scheme realizes very accurate estimate of the PDFs.
- We are ready to evaluate digital transmission characteristics of radio-relay systems using the proposed channel model.